完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > pcb
PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。
PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。
作用
电子设备采用印制板后,由于同类印制板的一致性,从而避免了人工接线的差错,并可实现电子元器件自动插装或贴装、自动焊锡、自动检测,保证了电子设备的质量,提高了劳动生产率、降低了成本,并便于维修。
生产流程
开料------内层-----层压----钻孔---沉铜----线路---图电----蚀刻-----阻焊---字符----喷锡(或者是沉金)-锣边—v割(部分PCB不需要)-----飞测----真空包装
PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。
作用
电子设备采用印制板后,由于同类印制板的一致性,从而避免了人工接线的差错,并可实现电子元器件自动插装或贴装、自动焊锡、自动检测,保证了电子设备的质量,提高了劳动生产率、降低了成本,并便于维修。
生产流程
开料------内层-----层压----钻孔---沉铜----线路---图电----蚀刻-----阻焊---字符----喷锡(或者是沉金)-锣边—v割(部分PCB不需要)-----飞测----真空包装
绘制PCB板设计图用什么软件
首先要将你的win10预览版换成win7 64bit(32bit也可以,比较推荐64)。因为现价段win7还是最适合用于工作的系统,还在更新的行业软件都已经能很好的在win7上工作。不再更新的软件也因win7用户基数大,出现了各种解决方案。win8及以上系统更适合于带有触摸屏的平板使用。
看楼主还在PCB软件选择阶段,你首先要学的肯定是Altium了,这是国内不二的入门PCB绘制软件。因为Altium前身就是老一辈爱不释手的protel 99SE。网上资料非常的多,不懂的还可以问老师,入门很容易,愿意花些精力的话几天就能绘制一些简单的PCB了。
熟练绘制流程(基本步骤是:原理图封装-原理图-网表-PCB封装-PCB-光绘文件)并能熟练使用altium后,根据绘制PCB的复杂程度可以学习你的第二个软件(建议PADS或candence)。当然,altium也可以用于绘制多层复杂的PCB,但不如PADS或candence好用。
简单板子还是altium方便。当涉及到大量PI、SI、仿真等问题时就力不从心了。
直接能学会PADS或candence固然好,但刚入门的人会因为设置的参数太多,感觉太难而受打击,难以坚持。
先学精一款,能用它完成绝大部分工作再学习其他软件
我个人更推荐candence,我看到的PCB中,一般电脑主板、显卡等都用它。而手机主板、内存条等更多使用的是PADS。以后工作用那款还得看公司购买的那个软件,理论知识扎实后,剩下的就是在软件上点那里去实现你的想法的问题,换起来也快。
给楼主推荐的一个软件就是Altium,虽然看起来并没有那么令人感觉另类和高逼格。但这真的是我能想到的不二选择。
PCB电路板设计基础知识
虽然电路板厂的工程师不参与设计电路板,而是由客户出原始设计资料再制成公司内部的PCB电路板制作资料,但通过多年的实践经验,工程师们对PCB电路板的设计早已有所积累,总结如下仅供参考:
1.如果设计的电路系统中包含FPGA器件,则在绘制原理图前必需使用Quartus II软件对管脚分配进行验证。(FPGA中某些特殊的管脚是不能用作普通IO的)。
2.4层电路板从上到下依次为:信号平面层、地、电源、信号平面层;6层电路板从上到下依次为:信号平面层、地、信号内电层、信号内电层、电源、信号平面层。6层以上板(优点是:防干扰辐射),优先选择内电层走线,走不开选择平面层,禁止从地或电源层走线(原因:会分割电源层,产生寄生效应)。
3.多电源系统的布线:如FPGA+DSP系统做6层电路板,一般至少会有3.3V+1.2V+1.8V+5V。
3.3V一般是主电源,直接铺电源层,通过过孔很容易布通全局电源网络;
5V一般可能是电源输入,只需要在一小块区域内铺铜。且尽量粗(你问我该多粗——能多粗就多粗,越粗越好);

1.2V和1.8V是内核电源(如果直接采用线连的方式会在面临BGA器件时遇到很大困难),布局时尽量将1.2V与1.8V分开,并让1.2V或1.8V内相连的元件布局在紧凑的区域,使用铜皮的方式连接,如图:

总之,因为电源网络遍布整个PCB电路板,如果采用走线的方式会很复杂而且会绕很远,使用铺铜皮的方法是一种很好的选择!
4.邻层之间走线采用交叉方式:既可减少并行导线之间的电磁干扰(高中学的哦),又方便走线。
5.模拟数字要隔离,怎么个隔离法?布局时将用于模拟信号的器件与数字信号的器件分开,然后从AD芯片中间一刀切!
模拟信号铺模拟地,模拟地/模拟电源与数字电源通过电感/磁珠单点连接。

6.基于PCB设计软件的PCB电路板设计也可看做是一种软件开发过程,软件工程最注重“迭代开发”的思想,我觉得PCB设计中也可以引入该思想,减少PCB错误的概率。
(1) 原理图检查,尤其注意器件的电源和地(电源和地是系统的血脉,不能有丝毫疏忽);
(2) PCB封装绘制(确认原理图中的管脚是否有误);
(3) PCB封装尺寸逐一确认后,添加验证标签,添加到本次设计封装库;
(4) 导入网表,边布局边调整原理图中信号顺序(布局后不能再使用OrCAD的元件自动编号功能);
(5) 手工布线(边布边检查电源地网络,前面说过:电源网络使用铺铜方式,所以少用走线);
总之,PCB设计中的指导思想就是边绘制封装布局布线边反馈修正原理图(从信号连接的正确性、信号走线的方便性考虑)。
7.晶振离芯片尽量近,且晶振下尽量不走线,铺地网络铜皮。多处使用的时钟使用树形时钟树方式布线。
8.连接器上信号的排布对布线的难易程度影响较大,因此要边布线边调整原理图上的信号(但千万不能重新对元器件编号)。
9.多板接插件的设计:
(1) 使用排线连接:上下接口一致;
(2) 直插座:上下接口镜像对称,如下图:

10.模块连接信号的设计:
(1) 若2个模块放置在PCB同一面,则管教序号大接小小接大(镜像连接信号);
(2) 若2个模块放在PCB不同面,则管教序号小接小大接大。
这样做能放置信号像上面的右图一样交叉。当然,上面的方法不是定则,我总是说,凡事随需而变(这个只能自己领悟),只不过在很多情况下按这种方式设计很管用罢了。
11.电源地回路的设计:

上图的电源地回路面积大,容易受电磁干扰。

上图通过改进——电源与地线靠近走线,减小了回路面积,降低了电磁干扰(679/12.8,约54倍)。因此,电源与地尽量应该靠近走线!而信号线之间则应该尽量避免并行走线,降低信号之间的互感效应。
Hi,各位小伙伴,我们又见面啦!上一期我们分享了华秋DFM软件中筛选器的使用方法(戳这里回顾:华秋DFM软件丨操作教程——工具菜单-筛选器篇),很多小伙...
在电子设计领域,评估板常常是工程师们探索新技术、验证设计方案的得力工具。今天,我们就来深入了解一下 onsemi 的 NCN26010BMNEVB 10...
在当今的电子设计领域,对于高效、可靠的通信解决方案的需求日益增长。onsemi的NCN26010XMNEVB评估板为工程师们提供了一个绝佳的平台,用于探...
本文从器件选型、原理图设计及PCB layout等几个方面全面的介绍电机驱动板设计需要注意的事项,文末提供了RZ系列的两个电机驱动的demo供参考。
在电子设计领域,模数转换器(ADC)是连接模拟世界和数字世界的关键桥梁。TI推出的ADS8326作为一款16位、高速、微功耗的采样模数转换器,凭借其...
在电子制造领域,PCB的质量直接影响到电子设备的性能与可靠性。红墨水试验,又叫染色试验,是一种常用的电子组装焊接质量的分析手段,可以考察电子零件的焊接工...
PCB(PrintedCircuitBoard),中文名称为印制电路板,又称印刷线路板,是重要的电子部件,是电子元器件的支撑体,是电子元器件电气相互连接...
印刷电路板(PCB)作为电子设备的核心互联载体,其制造质量直接决定终端产品的稳定性与使用寿命。随着5G通信、柔性电子等技术的快速发展,PCB产业呈现两大...
在现代电子制造领域,PCB(印刷电路板)作为电子元器件的载体,其制造过程中激光焊锡技术以其高精度、高效率、低热影响等优势,成为PCB电子制造中的关键环节...
在智能手机、可穿戴设备、航空航天电子等高端领域,PCB(印制电路板)上的元器件越来越小,引脚间距日益精密。传统焊接方式在面对这些毫米甚至微米级的小焊点时...
采购必读!从UL认证、产品系列、价格性价比、交期、技术支持、环保合规到售后服务,7大维度教你快速评估三防漆供应商,轻松避坑,选到真正靠谱的厂家直销伙伴。...
英特尔计划在2027年基于18A制程为苹果生产低端M系列处理器的消息,引发业界对芯片代工模式的讨论。但鲜少有人关注:当晶体管密度激增,芯片功耗集中度提升...
电子电路产业正面临绿色转型与智能升级的双重挑战,作为工业自动化与数字化领域的领军企业,汇川技术正将数字能源领域的创新成果深度应用于PCB制造过程中的各种...
在主板制造领域,“沉金工艺”常被视作高端 PCB 的象征。许多人好奇:“沉金”用的是真黄金吗? 为什么不用其他金属? 本文将揭开这一工艺的神秘面纱,带你...
PCB可靠性的隐形杀手 在电子产品小型化、高密度化的趋势下,PCB线路宽度已进入微米时代。然而,制程中残留的离子污染物如同定时炸弹,在湿热环境下悄然引发...
在电源转换、工业控制、汽车电子等领域,功率MOS管是实现高效功率控制的核心器件。然而,工程师在应用中常遇到参数选择、导通时间计算、PCB散热设计等问题,...
一站式PCBA加工厂家今天为大家讲讲多层板上通孔,埋孔,盲孔怎么判定?多层板上通孔,埋孔,盲孔判定方法。在多层印制电路板(PCB)中,通孔、埋孔和盲孔的...
当业界普遍将离子捕捉剂定位为半导体封装专用材料时,其应用边界正在快速扩展。本文突破传统思维框架,展示IXE系列在印刷电路板、显示面板、新能源电池三大领域...
一、项目背景与核心痛点 某国内头部 3C 电子代工厂专注智能手机、智能穿戴设备核心部件生产,其 PCB 分板机产线承担着手机主板、智能手表主板等精密元器...
线路板(PCB)是电子设备的 “神经中枢”,线路断路会直接导致设备瘫痪。想要从源头避免这一问题,需在设计、选材、加工全流程建立防护意识,掌握关键控制要点...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
| 电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
| BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
| 无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
| 直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
| 步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
| 伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
| 开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
| 5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
| NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
| Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
| 语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
| CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
| SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
| Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
| 示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
| OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
| C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
| Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
| DuerOS | Brillo | Windows11 | HarmonyOS |