完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 加速度计
加速度计由检测质量(也称敏感质量)、支承、电位器、弹簧、阻尼器和壳体组成。
加速度计,是测量运载体线加速度的仪表。
加速度计由检测质量(也称敏感质量)、支承、电位器、弹簧、阻尼器和壳体组成。
其中,在测量飞机过载的加速度计是最早获得应用的飞机仪表之一。
加速度计,是测量运载体线加速度的仪表。
加速度计由检测质量(也称敏感质量)、支承、电位器、弹簧、阻尼器和壳体组成。
其中,在测量飞机过载的加速度计是最早获得应用的飞机仪表之一。
闭环液浮摆式
它的工作原理是:当仪表壳体沿输入轴作加速运动时,检测质量因惯性而绕输出轴转动,传感元件将这一转角变换为电信号,经放大后馈送到力矩器构成闭环。力矩器产生的反馈力矩与检测质量所受到的惯性力矩相平衡。输送到力矩器中的电信号(电流的大小或单位时间内脉冲数)就被用来度量加速度的大小和方向。摆组件放在一个浮子内,浮液产生的浮力能卸除浮子摆组件对宝石轴承的负载,减小支承摩擦力矩,提高仪表的精度。浮液不能起定轴作用,因此在高精度摆式加速度计中,同时还采用磁悬浮方法把已经卸荷的浮子摆组件悬浮在中心位置上,使它与支承脱离接触,进一步消除摩擦力矩。浮液的粘性对摆组件有阻尼作用,能减小动态误差,提高抗振动和抗冲击的能力。波纹管用来补偿浮液因温度而引起的体积变化。为了使浮液的比重、粘度基本保持不变,以保证仪表的性能稳定,一般要求有严格的温控装置。
挠性摆式
采用挠性支承的摆式加速度计。摆组件用两根挠性杆与仪表壳体连接。挠性杆绕输出轴的弯曲刚度很低,而其他方向的刚度很高。它的基本工作原理与液浮摆式加速度计类似。这种系统有一高增益的伺服放大器,使摆组件始终工作在零位附近。这样挠性杆的弯曲很小,引入的弹性力矩也微小,因此仪表能达到很高的精度。这类加速度计有充油式和干式两种。充油式的内部充以高粘性液体作为阻尼液体,可改善仪表动态特性和提高抗振动、抗冲击能力。干式加速度计采用电磁阻尼或空气膜阻尼,便于小型化、降低成本和缩短启动时间,但精度比充油式低。
振弦式
由两根相同的弦丝作为支承的线性加速度计。两根弦丝在永久磁铁的气隙磁场中作等幅正弦振动。弦丝的振动频率与弦丝张力的平方根成比例。不存在加速度作用时,两根弦丝的张力相等,振动频率也相等,频率差等于零。当沿输入轴有加速度作用时,作用在检测质量上的惯性力使一根弦丝的张力增大,振动频率升高;而另一根弦丝的张力则减小,振动频率降低。仪表中设有和频控制装置,保持两根弦丝的振动频率之和不变。这样两根弦丝的振动频率之差就与输入加速度成正比。这一差频经检测电路转换为脉冲信号,脉冲频率与加速度成正比,而脉冲总数与速度成正比,因此这种仪表也是一种积分加速度计。弦丝张力受材料特性和温度影响较大,因此需要有精密温控装置和弦丝张力调节机构。
摆式积分陀螺
利用自转轴上具有一定摆性的双自由度陀螺仪来测量加速度的仪表。陀螺转子的质心偏离内环轴,形成摆性。如果转子不转动,陀螺组件部分基本上是一个摆式加速度计。当沿输入轴(即陀螺外环轴)有加速度作用时,摆绕输出轴(即内环轴)转动,使轴上的角度传感器输出信号,经放大后馈送到外环轴力矩电机,迫使陀螺组件绕外环轴移动,在内环轴上产生一个陀螺力矩。它与惯性力矩平衡,使角度传感器保持在零位附近。陀螺组件绕外环轴转动的角速度正比于输入加速度,转动角度的大小就是输入加速度的积分,即速度值。通常在外环轴上安装一个脉冲输出装置,用以得到加速度计测量的加速度和速度信息:脉冲频率表示加速度;脉冲总数表示速度。这种加速度计靠陀螺力矩来平衡惯性力矩,它能在很大的量程内保持较高的测量精度,但结构复杂、体积较大、价格较贵。
加速度计的分类主要依据其工作原理和测量维度(轴数),以下是详细的分类:按工作原理分类(这是最核心的分类方式)这是根据加速度计内部如何感知和转换加速度信号...
在精确制导、飞行导航、卫星控制等高端领域,每一个细微的动作都直接关系到任务成败与生命安全。在这些系统中,加速度计作为感知运动的核心部件之一,实时监测载体...
查看陀螺仪和加速度计的惯性传感器数据时,您会发现平均信号输出通常存在小的偏移,即使没有运动也是如此。这就是所谓的传感器零偏(SensorBias)。在数...
在石油钻井领域,向地下数千米的复杂地层挺进,无异于一场在黑暗中的精准导航。钻头需要在高温、高压、高振动的极端环境下,沿着预设的复杂三维轨迹准确命中油气储...
在工业机器人、无人机和结构监测等领域,对三维运动的精确测量是实现智能控制的基础。这一任务的核心执行者,便是三轴MEMS加速度计。它将物理运动精确转化为系...
直川科技加速度计P/N 619-1883专为卡特彼勒履带式推土机坡度检测设计,通过高精度三轴测量实时反馈设备倾斜角度。其具备工业级防护与抗振动干扰能力,...
在智能科技飞速发展的今天,从翱翔天空的飞行器到我们手中的智能设备,对运动的精准感知已成为关键。加速度计,作为测量加速度和振动的核心传感器,其选型直接决定...
在无人机技术飞速发展的今天,尤其是固定翼大型无人机在测绘、物流、巡检等领域的广泛应用,飞行稳定性与数据精度成为衡量其性能的关键指标。你是否曾好奇:是什么...
有客户提问到是否可以通过加速度的数据算出物体垂直移动的速度?简短的回答是:不能直接测量,但可以通过间接计算来估算,不过这种方法通常误差较大,不太适合精确...
在高端惯性导航、精密平台稳定和机械设备监测领域,测量精度每次提升,都意味着系统性能的一次飞跃。当应用环境充满挑战,动态变化频繁,如何确保加速度测量数据始...
在现代高端装备与精密仪器领域,如便携式自主导航系统、机器人关节以及各类嵌入式监测平台,其设计都面临着严苛的空间限制。在这些“寸土寸金”的环境中,实现精准...
当火箭撕裂天际,当飞机云中漫步,我们见证着人类征服苍穹的壮举。然而,在这背后,有一个精密部件正以高精度守护着每一次飞行——它便是高性能石英加速度计。没有...
在工业自动化、结构健康监测或高精度导航系统中,是否常常因为传感器精度不够、稳定性差,而导致数据失真、系统误判?尤其是在振动测量、倾斜检测和惯性导航等关键...
由于历史发展原因,我国传感器,尤其是中高端传感器的发展,长期滞后于国际先进水平,存在不少被“卡”脖子的细分领域,高端传感器技术的突破往往由国外企业完成,...
MEMS加速度计是近年来发展起来的一种新型加速度计。它使用振动梁作为加速度传感器。振动梁由硅或石英晶体材料制成,并通过静电或压电作用以共振频率振动。双端...
在惯性传感技术飞速发展的今天,ER-MA-6 MEMS加速度计以其微机电系统核心,将尺寸浓缩至指甲般小巧,却丝毫不减性能锋芒。这款产品专为测量重力引发的...
在地下数千米的复杂钻井环境中,钻头需要穿越坚硬的岩层、承受剧烈振动和超过150℃的高温。此时,石英加速度计就如同钻井系统的"感知神经"...
在惯性测量领域,高精度加速度计的市场格局似乎早已固化:石英加速度计凭借其卓越的稳定性长期占据着高端应用的统治地位。然而,这一格局正在被悄然打破。ER-M...
在惯性传感技术飞速发展的今天,MEMS加速度计作为一种基于微机电系统的传感器,凭借其体积小、重量轻、功耗低的优势,已成为工业设备、航空航天、能源勘探和自...
在石油钻井行业中,随钻测量系统对传感器的性能要求极为严苛。传感器不仅需要在高温、高压、强振动的极端环境下稳定工作,还必须具备小尺寸、高可靠性以及优异的长...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
| 电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
| BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
| 无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
| 直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
| 步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
| 伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
| 开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
| 5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
| NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
| Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
| 语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
| CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
| SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
| Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
| 示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
| OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
| C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
| Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
| DuerOS | Brillo | Windows11 | HarmonyOS |